If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9p^2-24p+14=0
a = 9; b = -24; c = +14;
Δ = b2-4ac
Δ = -242-4·9·14
Δ = 72
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{72}=\sqrt{36*2}=\sqrt{36}*\sqrt{2}=6\sqrt{2}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-24)-6\sqrt{2}}{2*9}=\frac{24-6\sqrt{2}}{18} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-24)+6\sqrt{2}}{2*9}=\frac{24+6\sqrt{2}}{18} $
| 102=2-5(-4+2x) | | n(n+1)(n+2)=48n+24 | | 102=2-5(4+2x) | | 4x-5(x+4)=2 | | 3x+2/5=1/10 | | -8(1-6x)=-296 | | 6-4(x-6)=18 | | 5-7(n+7)=5 | | 2(1-7b)=-96 | | 3y-9+3(2y+5)=-5(y+2) | | y/2=18=4 | | 3x+3(x-1)=15 | | -2(m+1)=10- | | 64s+3=90 | | -26=5y+11 | | 0.2y+1.4y−0.5y+1.4=8 | | 5/8x+2=1/8x-9 | | 6(4s)+3=90 | | (7x+15)^2=12 | | 4/5x-1=1/5x+5 | | 54=1/2(3n) | | 54=1/23n | | -5-8x=19-4x | | 3x-7=-4x+2 | | 32l+1=69 | | 2-3x=2-12x | | 5a-8=65 | | 5x-7=13x-8 | | 4a²-28a+40=0 | | 8+5y=10+8y | | 8x–(2x–9)=7(2+x)–10 | | 9x-4=x-4 |